Text Type Classification in the Japanese Language
نویسندگان
چکیده
منابع مشابه
Language sensitive text classification
It is a traditional belief that in order to scale-up to more effective retrieval and access methods modern Information Retrieval has to consider more the text content. The modalities and techniques to fit this objectives are still under discussion. More empirical evidence is required to determine the suitable linguistic levels for modeling each IR subtask (e.g. information zoning, parsing, feat...
متن کاملTowards Automatic Error Type Classification of Japanese Language Learners' Writings
Learner corpora are receiving special attention as an invaluable source of educational feedback and are expected to improve teaching materials and methodology. However, they include various types of incorrect sentences. Error type classification is an important task in learner corpora which enables clarifying for learners why a certain sentence is classified as incorrect in order to help learne...
متن کاملfocus on communication in iranian high school language classes: a study of the role of teaching materials in changing the focus onto communication in language classes
چکیده ارتباط در کلاس به عوامل زیادی از جمله معلمان، دانش آموزان، برنامه های درسی و از همه مهم تر، مواد آموزشی وابسته است. در تدریس ارتباطی زبان که تاکید زیادی بر توانش ارتباطی دارد، کتاب درسی به عنوان عامل موثر بر پویایی کلاس محسوب میگردد که درس ها را از طریق فراهم آوردن متن ارتباط کلاسی و هم چنین نوع تمرین زبانی که دانش آموزان در طول فعالیت های کلاسی به آن مشغول اند، کنترل می کند. این حقیقت ک...
15 صفحه اولText Classification using Language-independent Pre-processing
A number of language-independent text pre-processing techniques, to support multi-class single-label text classification, are described and compared. A simple but effective statistical keyword identification approach is proposed, coupled with a number of phrase identification mechanisms. Experimental results are presented.
متن کاملFine-tuned Language Models for Text Classification
Transfer learning has revolutionized computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Fine-tuned Language Models (FitLaM), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a state-of-the-art language model. Our method significantly out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Linguistica Asiatica
سال: 2012
ISSN: 2232-3317
DOI: 10.4312/ala.1.3.97-104